The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl

نویسندگان

  • Florian Mendel
  • Christian Rechberger
  • Martin Schläffer
  • Søren S. Thomsen
چکیده

In this work, we propose the rebound attack, a new tool for the cryptanalysis of hash functions. The idea of the rebound attack is to use the available degrees of freedom in a collision attack to efficiently bypass the low probability parts of a differential trail. The rebound attack consists of an inbound phase with a match-in-the-middle part to exploit the available degrees of freedom, and a subsequent probabilistic outbound phase. Especially on AES based hash functions, the rebound attack leads to new attacks for a surprisingly high number of rounds. We use the rebound attack to construct collisions for 4.5 rounds of the 512-bit hash function Whirlpool with a complexity of 2 compression function evaluations and negligible memory requirements. The attack can be extended to a near-collision on 7.5 rounds of the compression function of Whirlpool and 8.5 rounds of the similar hash function Maelstrom. Additionally, we apply the rebound attack to the SHA-3 submission Grøstl, which leads to an attack on 6 rounds of the Grøstl-256 compression function with a complexity of 2 and memory requirements of about 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rebound Attacks on the Reduced Grøstl Hash Function

Grøstl is one of 14 second round candidates of the NIST SHA-3 competition. Cryptanalytic results on the wide-pipe compression function of Grøstl-256 have already been published. However, little is known about the hash function, arguably a much more interesting cryptanalytic setting. Also, Grøstl-512 has not been analyzed yet. In this paper, we show the first cryptanalytic attacks on reduced-rou...

متن کامل

Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher

In this paper, we propose two new ways to mount attacks on the SHA-3 candidates Grøstl, and ECHO, and apply these attacks also to the AES. Our results improve upon and extend the rebound attack. Using the new techniques, we are able to extend the number of rounds in which available degrees of freedom can be used. As a result, we present the first attack on 7 rounds for the Grøstl-256 output tra...

متن کامل

Grøstl Distinguishing Attack: A New Rebound Attack of an AES-like Permutation

We consider highly structured truncated differential paths to mount a new rebound attack on Grøstl-512, a hash functions based on two AES-like permutations, P1024 and Q1024, with non-square input and output registers. We explain how such differential paths can be computed using a Mixed-Integer Linear Programming approach. Together with a SuperSBox description, this allows us to build a rebound ...

متن کامل

How to Improve Rebound Attacks

Rebound attacks are a state-of-the-art analysis method for hash functions. These cryptanalysis methods are based on a well chosen differential path and have been applied to several hash functions from the SHA-3 competition, providing the best known analysis in these cases. In this paper we study rebound attacks in detail and find for a large number of cases that the complexities of existing att...

متن کامل

(Pseudo) Preimage Attack on Round-Reduced Grøstl Hash Function and Others (Extended Version)

The Grøstl hash function is one of the 5 final round candidates of the SHA-3 competition hosted by NIST. In this paper, we study the preimage resistance of the Grøstl hash function. We propose pseudo preimage attacks on Grøstl hash function for both 256-bit and 512-bit versions, i.e., we need to choose the initial value in order to invert the hash function. Pseudo preimage attack on 5(out of 10...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009